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Abstract 

 

Consider the example of a small, free-floating buoy using a directional antenna to communicate 

with a satellite. The position of the buoy must remain stable and directed towards the satellite for 

effective transmission. With a joint-actuated buoy, it is mechanically possible to stabilize the 

free-floating buoy and the antenna. The goal of this Trident project is to perform system 

identification of the joint-actuated buoy; prepare an animation for the response of the buoy to 

different inputs; and create a single loop control law for the two dimensional control of the buoy 

to keep it vertical at all times. 

 

To complement theoretical models derived from Newtonian physics, an experimentally derived 

model allows non-linear effects such as drag and added mass effects to be inherently accounted 

for within the experimental data. Using step response testing for the top and bottom servos was 

the primary method used to formulate the experimental model. An animation was created to help 

visually comprehend the dynamics of the buoy. Next, a single loop control law was developed to 

control the position of the buoy in two dimensions to keep the buoy vertical at all times; keeping 

the buoy stable while at a specified angle off of vertical was not attempted in this project due to 

the complexities of three dimension control with only two control surfaces. 

 

The system identification model, simulation, and single loop control law for the buoy could be 

utilized by the Navy to monitor meteorological measurements of the air column above the ocean 

surface, directional communications with a satellite, and support many other diverse operations. 

 

Keywords: system identification, experimental modeling, free-floating buoy, control systems, 

joint-actuated 
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Chapter 1: Introduction 

 

1.1 Problem Statement 

The goal of this Trident project was to experimentally derive a mathematical model of a joint-

actuated, free-floating buoy; prepare a high fidelity animation for the response of the buoy; and a 

develop single loop control law to keep the buoy vertical despite wave disturbances. Using an 

existing prototype, step response testing was the primary method used to create the experimental 

model.  

 

1.2 Motivation 

Consider the example of a small, free-floating buoy using a directional antenna with a beam 

width of ten degrees to communicate with a satellite using a remote sending application, as 

shown in Figure 1. To communicate effectively, the position of the buoy must remain stable and 

directed towards the satellite within the performance objective of the half power point of the 

satellite antenna, five degrees. With a joint-actuated buoy, it is mechanically possible to stabilize 

the free-floating buoy and the antenna. Payloads such as a camera or some other sensor with a 

narrow field of view could be used as well. Such a buoy presents many assets for the United 

States Navy and the mission of reconnaissance and intelligence. Attaching a camera or some 

other narrow field of view device could allow meteorological measurements of the air column 

above the ocean surface or provide directional communications with a satellite. Additionally, the 

design of the buoy complies with NATO size A sonobuoy dimensions, shown in Figure 2, 

making it compatible with any sonobuoy platform used by the Navy. A joint-actuated buoy is 

comprised of two distinct sections: the payload and the buoy housing. The payload contains the 

directional antenna and is the upper portion of the buoy, while the housing is the lower portion, 

shown in Figure 2. 

 

 

Figure 1: Joint-Actuated Buoy Directed Towards a Satellite 
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 Size A Sonobuoy (in) Join-Actuated Buoy (in) 

Length 36 32.36 

Diameter 4.875 3.13 

 

 

1.3 Related Work 

There are numerous publications describing directing antennas from floating or space objects. 

One method, as proposed by Timothy et al. [1], utilizes a pair or servomotors to direct the 

antenna towards its desired target. Two critical assumptions by Timothy are: the mass of the 

antenna is small compared to the mass of the vessel and the movement of the antenna caused by 

the servomotors does not impart any motion on the vessel. Frye et al. [2] have done work to point 

a directional antenna from a floating buoy. Their research evaluated the radio frequency design 

for the antenna, and it is also assumed that the movement of the antenna would not influence the 

motion of the vessel. Briguglio [3] proposed a multibody buoy to position an antenna with his 

Antenna Stabilizing Buoy invention. However, since Briguglio’s invention is comprised of 

several buoys connected by a four bar linkage, it is not practical for the proposed scenario. M. 

Romano and B. N. Agrawal [4] worked on a multibody spacecraft in which the two bodies were 

connected by a one degree of freedom joint. The intention was to use the satellite to redirect a 

ground-based laser from one ground station to another. While similar to the design of the buoy, 

Figure 2: Size A Sonobuoy and Joint-Actuated Buoy Dimensions 
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the satellite system differs from the buoy system in three major ways: the spacecraft must have 

both bodies directed towards their respective targets, the spacecraft’s center of mass is at the 

joint, and the joint is a single degree of freedom. For this project, only the payload must be 

pointed at the intended target, the center of mass is constantly changing to augment the position 

of the buoy, and the joint of the buoy has two degrees of freedom. 

 

Dr. Roger Cortesi of Naval Research Laboratory (NRL) in Washington, D.C. has proposed a 

theoretical model for the joint-actuated buoy described in this scenario [5]. The model applies 

Newtonian physics, incorporates an eight degree of freedom system, and attempts to describe the 

motion of the buoy through mathematical derivations. The non-linear effects of drag and added 

mass effects are the most uncertain components of the model. An experimentally derived 

mathematical model allows a model to be constructed through the testing of buoy responses 

given different inputs. All the uncertainties of the theoretical model, primarily fluid dynamics 

around the buoy, are inherently accounted for in the experimental data. 

 

Until recently, there has not been a prototype on which to perform experimental tests. Over the 

past year, Dr. Cortesi and his team of researchers have successfully developed but not tested a 

prototype of the proposed joint-actuated buoy, shown in Figure 3. It is with this buoy prototype 

that the experimental model was created. The goal of this project was to determine the 

experimental model of the buoy and create control laws to keep the buoy vertical at all time.   

Figure 3: Joint-Actuated Buoy Prototype 
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Chapter 2: The Buoy 

 

Dr. Cortesi and his team at NRL already fabricated many of the external components of the buoy 

joint before they lent the buoy for this project; this included the lengths of acrylic cylindrical 

tubing, aluminum end caps, and aluminum universal. The buoy was not watertight, and the 

internal components to control the buoy were not functional. 

 

2.1 Waterproofing 

The buoy design utilized an aluminum ring glued to the end of the acrylic tubing with the 

aluminum cap screwing onto the aluminum ring; inside the aluminum end cap were two O-rings 

to help create a watertight seal. Initial testing revealed that this design did not prove to be 

watertight with the water leaking between the aluminum ring and the acrylic tubing. Adding an 

acrylic flange below the aluminum ring was determined as the best solution because the bond 

between acrylic surfaces was watertight. The aluminum ring was sandwiched between the 

aluminum end cap and the acrylic flange, as show in Figure 4, to create a watertight seal. 

 

 To assemble the end cap, ring, and flange assembly properly required a specific method to 

ensure the watertight seal. First, the aluminum end cap and ring screwed together using four 3/8” 

#4 screws placed equidistant from one another to form an end cap/ring assembly. The gap 

between the end cap and the ring where the acrylic tubing fits, shown in Figure 5, was filled with 

acrylic glue. Once filled with glue, the end cap/ring assembly was placed onto the end of the 

buoy until it reached the acrylic flange. Four 3/8” #4 screws were then placed offset from the 

first four screws to connect the end cap/ring assembly to the acrylic flange. The glue cured after 

several hours and created the necessary watertight seal. This process was used on all four ends of 

the buoy – both ends of the payload and housing. Once the buoy was watertight, the next step 

was to organize the internal components for testing. 

Figure 4: End Cap/Ring Assembly Attached to Acrylic Flange 



11 

 

 

2.2 Internal Hardware 

The internal hardware for the joint-actuated buoy included a power supply, processor, inertial 

measurement unit (IMU), wireless transmitter, and actuators. 

 

2.2.1 Power Supply 

The buoy used two battery packs, each containing seven sub-C cell batteries, for fourteen Nickel-

Cadmium batteries total. These motivational fourteen cells provided an average of 8.5 volts to 

the buoy powering the processor, IMU, wireless transmitter, and the actuators. 

 

2.2.2 Processor 

An Arduino Mega 2560 was the processor of choice. It has 54 digital input/output pins, of which 

15 can be used for pulse width modulation (PWM), 16 analog inputs, 4 hardware serial ports, 

and a USB connection. The four serial ports on the Arduino Mega 2560 were the deciding factor 

in choosing this processor; no other Arduino has as many serial ports to interface with other 

devices. This specific project required at least two serial ports for communication with the IMU 

and the wireless communication transmitter. The Arduino operated on 5 volts regulated from the 

batteries. 

 

2.2.3 Inertial Measurement Unit (IMU) 

The inertial measurement unit used was the VectorNav VN-100 Rugged. This miniature, high-

performance IMU combines 3-axis accelerometers, 3-axis gyros, 3-axis magnetic sensors, and a 

32-bit processor into a durable and lightweight three-dimensional and 360 degree position 

measurement sensor. Dimensions of 1.30 x 1.41 x 0.35 in. and a mass of 13 grams make the VN-

Figure 5: Aluminum End Cap and Ring 
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100 Rugged the smallest commercially available industrial grade IMU. Furthermore, the VN-100 

uses a quaternion based Kalman filter, ensuring reliable operation during gimbal-lock – when 

two axes are driven into parallel. Update rates as quick as 200Hz ensures the VN-100 reported 

orientation with minimal latency, a crucial requirement for control systems. The IMU operated 

on 5 volts supplied by the Arduino. 

 

2.2.4 Wireless Transmitter 

The XBee RF modules provided wireless end-point connectivity to devices. The transmitting 

XBee was located within the buoy and the receiving XBee mounted on a USB shield to attach to 

the USB port on the computer used for data collection. With ranges up to 100 foot and interface 

data rates up to 115.2 Kbps, the XBee was perfect for testing and system identification to record 

and analyze the IMU data. The wireless transmitter operated on 3.3 volts provided by the 

Arduino. 

 

2.2.5 Actuators 

The joint was actuated using two Hitec HS-5646WP metal gear digital servos. These servos are 

compact in size, measuring 1.65 x 0.83 x 1.57 in., and waterproof. They are able to move 60 

degrees in 0.20 seconds with 157 oz.-in of torque at six volts. This was important for the buoy 

application because the ability to quickly and efficiently change the position of the buoy housing 

is only second to the processor’s quickness in sending commands to the servos. The actuators 

received their power directly from the batteries. 

 

2.3 Basic Communication Flow 

The buoy used the following communication protocol through the internal hardware to transmit 

orientation data from the IMU to a computer for data processing: 

 

1. The Arduino sends a command string to the IMU requesting orientation data 

2. The IMU sends the requested data to the Arduino 

3. The Arduino reads the IMU string of data and parses the data for the two dimensional 

orientation of the buoy and the time. Additionally, the Arduino takes the IMU data and 

determines the proper command to send to the top and bottom servos. 

4. The two orientation measurements and the time are forwarded to the XBee on board the 

buoy for transmission to the other XBee attached to a computer 

5. Data is read on the computer using a serial monitoring program and stored in a .txt file 

for data processing 

 

Appendix A lists the created Arduino code used to complete the objective above. Once the 

proper protocol was established for interfacing all the internal components, the components had 

to be assembled into a concise package to fit within the buoy payload. 
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2.4 Printed Circuit Board Construction 

A princted circuit board (PCB) allowed all the internal components to neatly interact within one 

another. Creating the schematic for the printed circuit board required the use of the ExpressPCB 

software. Figure 6 shows the final circuit board ExpressPCB drawing; the green markings 

represent the drawings to be printed while the yellow marks are for aesthetic and orientation 

purposes. Working from top to bottom on Figure 6, the top serial port connection went to the top 

of the buoy payload. This allowws for the buoy to be opperated by an external power source and 

for the Arduino to be reprogrammed. Below the serial port, the MAX232 chip was a 5 volt 

regulator. As mentioned earlier, the batteries provides 8.5 volts to the buoy, but the Arduino 

operated on 5 volts. In the middle of the board was another serial port used to communicate with 

the IMU. Below the second serial port was a circuit breaker to help protect the IMU from any 

voltage surges. Lastly, at the base of the board was a third serial port which was used to receive 

power from the batteries and send commands to the servos. The small holes on the left, bottom, 

and right are the pin locations so the printed circuit board may be used as a shield and fit on top 

of the Arduino. 

 

The green drawing was printed onto blue transfer paper and stuck to the copper side of a blank 

prefabricated circuit board. The copper and blue paper were then heated in a press-n-peel press 

for just over one minute to allow the printer toner to bond with the copper. The blue paper was 

removed, leaving only the printed circuit board design on the copper. The copper was then 

submerged in a ferric chloride etching solution. The solution disolved all exposed copper from 

the originally blank circuit board, leaving only copper that was covered by the toner from the 

circuit board design. Once all the excess copper dissolved, the toner was scrubbed off to reveal 

the circuit board. Holes were then drilled in the necessary spots for the serial ports and other 

components to be soltered into place. Figure 7 shows the completed circuit board ready to be 

mounted on top of the Arduino Mega 2560 processor. Figure 8 shows the PCB mounted onto the 

Arduino 2560 with the VectorNav IMU, XBee module, and serial connnections completed for 

installation within the buoy. With the internal hardware no installed, the next step was to begin 

data collection and start the step response testing. 
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Figure 6: Circuit Board Schematic Figure 7: Completed Circuit Board 

Figure 8: Final Assembly of Buoy Internal Components 
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Chapter 3: Data Collection 

 

3.1 IMU Data 

Data received from the IMU was recorded using an RS232 Port Logger program from Eltima 

software and stored as a .txt file in a specified directory. The IMU data was formatted in the 

Arduino program to send the pitch, roll, and time values to the computer. From this .txt file, 

MATLAB code plotted the two dimensional position of the buoy. 

 

To monitor the position of the buoy in two-dimensional space, computer vision was intended as a 

secondary method. The two methods for orientation would have acted as redundancy to ensure 

the position data collected from the buoy was as accurate as possible. Electrical supply 

difficulties with the VectorNav IMU required making computer vision the primary method of 

determining the buoy orientation, as the IMU was deemed undependable for testing. 

 

3.2 Computer Vision for Orientation 

The other method for collecting buoy orientation data was tracking of colored markers placed on 

the outside of the acrylic tubing. The overall process required a camera, the camera to record the 

movement of the buoy, and then MATLAB code to analyze the video frames. The first step was 

to determine what camera and lens size to use. The Naval Academy Weapons and Systems 

Engineering Department had several blue Imaging Source cameras readily available for use. The 

calculated pinhole model focal length for a three-foot buoy observed from nine feet away with a 

4.8 mm sensor was 14.4 mm. Based on readily available lenses within the Department a 12 mm 

lens was chosen. 

 

Based on recommendations, children’s craft foam was used for the markers. Their matte finish 

kept variations due to brightness at a minimum, and the colors of orange and green were chosen 

because there were no orange or green objects near the intended testing site that could be 

accidentally interpreted as the buoy. These colors were placed alternating and equidistant to each 

other running along the length of the payload, as shown in Figure 9. 

 

 

 

Figure 9: Green and Orange Colored Stripes of Craft Foam on the Buoy Payload 
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3.3 Step Testing 

With the ability to track the orientation of the buoy, step response testing began to determine the 

experimental model of the buoy. Testing was conducted in the Naval Academy 120 foot tow tank 

with the camera placed perpendicular to the tow tank to record essentially one dimension of 

orientation at a time. Tests were conducted using the two servos, top and bottom servo, which 

comprised the joint. Step tests were conducted by sending a command to first “center” the top 

and bottom servos to make the buoy vertical in two dimensions. Next, a step input was sent to 

the bottom servo to change the “center” position by +5 degrees. The proceeding buoy 

oscillations were recorded and stored as an AVI file for post testing data processing. The power 

was cycled, and the Arduino was reprogrammed to give the servo a +10 degree change the 

second time. The proceeding buoy oscillations were recorded and stored as an AVI file once 

again. This process was repeated at intervals of 5 degrees up to +35 degrees, and then with 

opposite commands from -5 to -35 for a total of 14 different step input tests for the bottom servo. 

The buoy was rotated 90 degrees to complete testing for the other servo because the camera 

could only record one dimension of orientation at a time. All 14 tests were repeated again with 

the top servo to produce 28 total step response tests. Figure 10 depicts the testing matrix and a 

graphic to help visualize a step input. 

 

Top and Bottom Servo Step Inputs (degrees) 

-35 -30 -25 -20 -15 -10 -5 +5 +10 +15 +20 +25 +30 +35 

  

Figure 10: Buoy Step Response Testing Matrix and Graphic 
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Chapter 4: Data Processing 

 

4.1 Image Processing 

MATLAB code in Appendix D was used to analyze the videos on a frame by frame basis. The 

code read each video one frame at a time, created a red-blue-green (RGB) .jpg image of the 

frame, and saved the frame in a new folder. Once this was completed for all the frames of the 

video, the next step was to analyze each frame individually: 

 

A. The code read each .jpg image of the buoy and converted the image from RGB to YCbCr 

color model to help filter out any disparities due to differing brightness.  

I. RGB is the red-green-blue spectrum that is most common in imaging; it is very 

susceptible to differences to brightness. YCbCr is a different color scheme that is 

based on the brightness. Y is the brightness (luma), Cb is the blue minus luma (B-

Y), and Cr is red minus luma (R-Y). YCbCr is not as easily affected by changes in 

brightness and was the choice for computer vision analysis. 

 

B. The YCbCr image was filtered to a black and white image where only pixels that fell 

within the desired orange or green YCbCr color parameters had their values changed to 

white; all other pixels values were changed to black. 

 

C. The black and white image underwent another filter that deleted any groupings of pixels 

less than a desired size of 2400 pixels and created a second black and white image. The 

only displayed object was a white rectangle representing the orange or green strip of craft 

foam. 

 

D. One last MATLAB function was used to determine the orientation of the white block 

with respect to the horizontal axis. The value was stored in a matrix of orientation values. 

 

This four-step process, depicted in Figure 11, repeated for each .jpg image from all 28 videos. 

Appendix B depicts the created MATLAB code to complete the previously mentioned algorithm. 

 

4.2 System Identification 

Now that the buoy orientation had been calculated for each frame, the matrix of orientations 

were plotted to produce a plot of the step response in degrees versus time. Additionally, the 

MATLAB function ssest was used to derive the desired state space model. Ssest is a function that 

estimates a state-space model of a desired order using time domain data including input data, 

output data, and the sample time at which the data was recorded. 

 

Using visual inspection for different orders of state space models, a fifth order state space model 

was the simplest model that could still encompass the buoy dynamics. The input data was the 
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servo command ranging from -35 to +35, the output data was the orientation of the buoy as 

calculated from the computer vision image processing, and the sample time was 30 frames per 

second, or 0.033 seconds. Appendix C depicts the code to create each state space model. 

 

4.3 Modal Form and Eigenvalues 

After producing the 28 different state space models, the next step was to determine the best 

model that described the response of the buoy. As the 28 fifth order state space models did not 

have any pattern of resemblance, there needed to be a way to compare all the individual 

experimental models to create one model to describe the buoy system. Converting the matrices to 

their modal canonical form allowed this ability. 

 

To convert a matrix into modal form requires calculating and placing the eigenvalues on the 

diagonal. Solving Equation 1 for   produces the eigenvalues for any nxn matrix A; there will be n 

eigenvalues for the nxn matrix. 

 

                 (1) 

 

D.  Isolated Buoy Image 

A.  Red-Green-Blue (RGB) Image 

C.  Binarized Image 

B.  YCbCr Image 

Figure 11: Image Processing for Each Frame of Video 
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The next step is to place the eigenvalues diagonally in the new modal matrix  . For a system 

with the four eigenvalues   ,      , and   , Equation 2 depicts the arrangement of the 

eigenvalues in the modal form. 

 

   [

      
     
      
      

]   (2) 

 

The fifth order buoy, as such, had five eigenvalues: one real and two pairs of imaginary 

eigenvalues. Therefore, the common arrangement of each modal matrix    was: 

 

    

[
 
 
 
 
       
        
         
        

         ]
 
 
 
 

  

 

To complete the state space model, the B and C matrices must be accounted for as well [6]. 

 

     

[
 
 
 
 
  

  

  

  

  ]
 
 
 
 

     [          ] 

 

Once all the derived state space models had been placed in their modal form, an excel 

spreadsheet in Appendix E calculated the average of all the eigenvalues. Figure 12 shows the six 

models that were calculated: averages of bottom servo tests between -20 and +20 degrees, all 

bottom servo tests, top servo tests between -20 and +20 degrees, all top servo tests, all tests 

between -20 and +20 degrees, and all servo tests. 
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-482.878 0 0 0 0

0 -6.41454 67.85914 0 0

A = 0 -67.8591 -6.41454 0 0

0 0 0 -0.15415 1.162646

0 0 0 -1.16265 -0.15415

1.796636

-0.41992

B = 0.20532

-0.10743

0.16212

C = 2.587525 0.271517 -0.06184 3.383309 2.139851

Averages of ALL Tests  (-20<x<20)

-365.707 0 0 0 0

0 -10.5648 61.88672 0 0

A = 0 -61.8867 -10.5648 0 0

0 0 0 -0.18878 1.136882

0 0 0 -1.13688 -0.18878

1.779714

-0.93536

B = 0.390182

0.080695

-0.16095

C = 0.88626 0.939122 0.06078 2.033436 1.089489

Averages of ALL Tests (-35<x<35)

-121.551 0 0 0 0

0 -8.91663 59.59124 0 0

A = 0 -59.5912 -8.91663 0 0

0 0 0 -0.18976 1.113754

0 0 0 -1.11375 -0.18976

3.452307

0.077058

B = 0.957669

-0.31222

-0.41615

C = -0.68578 0.821313 0.41537 -0.15765 1.571224

Top Servo Averages (-35<x<35)

Model 6 

-893.858 0 0 0 0

0 -8.00003 53.93236 0 0

A = 0 -53.9324 -8.00003 0 0

0 0 0 -0.16218 1.191387

0 0 0 -1.19139 -0.16218

2.711915

-1.00717

B = 0.579117

-0.29772

0.11578

C = 4.032176 0.311822 0.006222 8.377624 2.579287

Bottom Servo Averages (-20<x<20)

Model 1 

-609.862 0 0 0 0

0 -12.2129 64.1822 0 0

A = 0 -64.1822 -12.2129 0 0

0 0 0 -0.1878 1.160011

0 0 0 -1.16001 -0.1878

0.107122

-1.94778

B = -0.1773

0.473614

0.094244

C = 2.458298 1.056931 -0.29381 4.224527 0.607754

Bottom Servo Averages (-35<x<35)

Model 2 

Model 3 Model 4 

Model 5 
Figure 12: Each of the Six Different Models 

-71.8978 0 0 0 0

0 -4.82904 81.78592 0 0

A = 0 -81.7859 -4.82904 0 0

0 0 0 -0.14611 1.133906

0 0 0 -1.13391 -0.14611

0.881358

0.16733

B = -0.16848

0.082874

0.208461

C = -1.14287 -0.23121 0.129898 1.611007 -1.70041

Top Servo Averages (-20<x<20)
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Chapter 5: Modeling and Animation 

 

5.1 Modeling 

MATLAB code in Appendix F was used to simulate each state space model by giving it a step 

input of +20 degrees, shown in Figure 13. The two main factors for determining the performance 

of a model was the amount of time until it made movement in the intended direction and how 

large was the peak overshoot. Models 1, 3, and 4 went opposite of the intended direction for too 

long, and Models 2 and 6 had a peak overshoot of nearly 100% when compared to their steady 

state value. That left Model 5, created averaging all tests conducted between -20 and +20 servo 

commands, as the best performing model out of the group. It should be noted that while each 

figure had different response amplitudes, all possessed similar dampening and oscillation 

frequency characteristics. 
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Figure 13: Simulations of all Six Models 
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Each model has an inherent DC Gain, or the ratio of the relationship between the magnitudes of 

the output compared to the input [6]. As noticed with Model 5, it did not reach the prescribed 

output of 20, but reached a steady-state value of approximately 14. To reach the desired output, a 

DC Gain must be applied to the output matrix  . In the case of Model 5, its exact DC Gain was 

determined to be 1.546. Figure 14 shows the difference between a model with and without DC 

gain implementation. 

 

5.2 Animation 

Besides the MATLAB code to simulate the state space models, code was also developed to 

provide visual feedback on the motion of the buoy. The code prepared a set of motion data using 

the experimentally derived model and prepared vertices for shapes to visually represent the 

payload and housing of the buoy. Next, the code ran an animation loop drawing each orientation 

of the buoy at each data point of the motion data, as shown by the still shots in Figure 15. 

Figure 15: Buoy Animation at Time 0, 3, and 30 seconds 
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Figure 14: The Effects of DC Gain on the Buoy System 



23 

 

Chapter 6: Results 

 

6.1 Validity of Experimental Model 

The goal of this project was to derive and experimental model of the buoy to better understand 

the dynamics of the buoy, create an animation, prepare control efforts to keep the buoy vertical. 

The best way to determine the validity of the model was to test the model against the recorded 

experimental buoy orientation, as is shown in Figure 16. While any variation in actual buoy 

orientation versus the modeled orientation is within the design specification of five degrees, the 

greatest disparity is within the oscillation frequency. The actual buoy oscillated around 4.5 Hz, 

while the experimental model tended to oscillate near 5.3 Hz. Additionally, its took the 

experimental model nearly 30 seconds before it fell an entire cycle behind the real buoy. For the 

control purposes of this model, the first second or two after the step input are the most important. 

While the model is not perfect in those first couple of seconds, it performs remarkably well to 

match the amplitude and frequency of the first peak. 

 

 

6.2 Controllability and Control Law 

Not all systems are capable of being controlled, but there is a process requiring matrix math to 

determine if a system is controllable [6]. Using the   and   matrices, concatenate the matrices 

following the method in Equation 3: 

 

      [            ] (3) 

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51
46

48

50

52

54

56

58

60

62

64

66

68

70

72

74

76

78

80

82

84

86

88

90

Time (sec)

Bu
oy

 P
os

itio
n

Figure 16: Model Prediction (Blue) vs. Buoy Orientation (Red) 



24 

 

If the created matrix is of full rank, meaning all rows and columns are linearly independent, then 

the system it is possible to control all the states of the system. When the experimental model was 

tested, the controllability matrix was of full, and thus proving the experimental model was 

controllable. 

 

A basic state variable feedback control model, as shown in Appendix G, was theorized for the 

buoy system [6]. This control method only required a control matrix   as a gain for the feedback 

loop and a control value of   . The constant   was calculated using Ackermann’s formula for a 

fifth order state space model and the  ,  , and   matrices from Model 5, and    is the inverse of 

the DC Gain [6]. 

 

6.3 Theoretical vs. Experimental Model 

As mentioned earlier, one of the easiest ways to compare state space models is to look at their 

eigenvalues. Figure 17 shows the eigenvalue plots for the theoretical model and the two servos 

from top to bottom overlaid on one another. Notice how each plot maintained a similar form with 

one pair of eigenvalues at the origin, one pair of eigenvalues left of the origin and farther from 

the x-axis and a real eigenvalue far left of the origin on the x-axis. While not all the original plots 

were the same scale, the overall similarity in each set of eigenvalue’s silhouette depicted the 

similarity in the true nature of each model. Additionally, the theoretical model has eight 

eigenvalues and the experimental models only have five eigenvalues each to remain consistent 

with the order of each system as discussed earlier; this explains the two eigenvalues on the real 

axis and the extra pair of complex eigenvalues for the Theoretical model (black). 

Figure 17: Comparison of Theoretical Model (black), Top Servo (blue), 

and Bottom Servo (red) Eigenvalues 
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Chapter 7: Future Work 

 

7.1 Improvements to System Identification 

While this project has been successful, there will always be room for improvement. Primarily, a 

functional on board sensor must be included in the upgraded version of the buoy to use for any 

future system identification or control efforts. Having a more precise measuring device like the 

IMU with a smaller sampling interval will help future experimentation and control efforts in two 

ways. First, it will reduce the unnecessary noise picked up using computer vision. It is difficult to 

get precise data with little noise when using computer vision because the reflected brightness 

changes sporadically at times, making the data less precise. Second, a quicker sampling interval 

will also help increase accuracy through more data points. The camera used for recording could 

only operate at 30 Hz (or frames per second). The IMU intended operated near 200 Hz, over six 

times quicker. With over six times the data points for the same testing will make the 

experimental models more accurate and precise to real world conditions. 

 

7.2 Control Laws 

The control law mentioned was purely theoretical because without an onboard orientation sensor, 

it was impractical to implement the control law. Implementing control efforts using computer 

vision would have required much more complexity than was necessary, introduced noticeable lag 

to the control system, and would not have met the design goal of creating a free-floating buoy. 

Implementing the control law on the buoy will be the next logical step after refining the model. 

There are many different control theories that could be tested on the buoy to determine the best 

combination of precision and agility to keep the buoy vertical at all times.  
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Appendix A: Arduino Code to Read IMU Data 
// Eric Fugleberg 

// 1 August 2013 

 

/* 

Code to have Arduino Mega and VN-100 IMU 

communicate to extract data to determine 

yaw, pitch, and role of IMU. The code first sets 

asynchronous data output to "no 

output," then defines the reference frame rotation, 

then (in accordance with the 

user manual) saves the settings and restarts the IMU. 

Once all this preliminary 

work has been done, yaw, pitch, and roll data is 

requested from the IMU is parsed 

and sent the computer to view in the Serial Monitor. 

 

Operating Settings for IMU: 

1) Asynchronous Data Output OFF 

2) Reference Frame set to (0,1,0,0,0,1,1,0,0) 

 

*** IF HAVING PROBLEMS WITH ASYNC 

DATA OR REFERENCE 

FRAME CHECK FUNCTIONS AT BOTTOM OF 

CODE *** 

 

*/ 

 

//=====================================

====================================== 

 

// ===== Declarations ===== 

// Include statements 

#include <stdio.h> 

#include <String.h> 

#include <Servo.h> 

 

// Serial3 to RECEIVE data from IMU into Arduino 

#define IMUport Serial3 

 

// Serial to SEND data from Arduino to PC (using 

XBEE) 

#define XBEEport Serial1 

 

// Create Servo object 

Servo botServo; // (Bottom Servo has the 3 grey 

connectors near it) 

Servo topServo; // (Top Servo has the Red and White 

cables near it) 

 

// ===== Declare more variables for data 

manipulation ===== 

// IMU Command matrix and length 

char IMUcmd[100]; 

 

// IMU Response String and length 

String IMUres = ""; 

char IMUres_char; 

 

// Declar yaw, pitch, and roll 

String yaw; 

String pitch; 

String roll; 

 

// Declare Quaternion yaw, pitch, and roll 

float qyaw; 

float qpitch; 

float qroll; 

 

// Declare quaternion strings 

String Q0; 

String Q1; 

String Q2; 

String Q3; 

 

// Declare quaternion buffers 

char q0[10]; 

char q1[10]; 

char q2[10]; 

char q3[10]; 

 

// Declare final quaternion matrix 

float q[4]; 

 

// Radians to Degree constant 

const float pi = 3.14159265359; 

const float r2d = 180.0/pi; 

 

// Servo center for buoy joint (BC: Bottom Center; 

TC: Top Center) 

// ***TEST TO CHECK VALUES ARE 

CORRECT*** 

int BC = 85; 

int TC = 92; 
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// Farthest joint can move off of Center (in degrees) 

int most = 25; 

 

// Timing element 

float tot = 0; 

float time = 0; 

 

//=====================================

====================================== 

 

// ===== Setup loop ===== 

void setup() 

{ 

  // ===== Set Baud Rate for Serial3 and Serial1 

===== 

  openBaud();  

      

  // ===== Set Async Data Output to Nothing ===== 

  setAsync(); 

   

  // ===== Set the Reference Frame Rotation (RFR) 

===== 

  setRef(); 

      

  // ===== Save the New Settings ===== 

  save(); 

     

//  // ===== Reset the IMU ===== 

//  reset(); 

       

  // ===== Start Data Request ===== 

  //startYPR();   

  startQuaternion(); 

} 

 

//=====================================

====================================== 

 

// ===== Main program loop ===== 

void loop() 

{  

  // ===== Continual Data Request ===== 

  //getYPR();  

  getQuaternion(); 

   

  // ===== Send Commands to the Servo Motors 

===== 

  //angles2servo(); 

   

  // ===== Clear the Strings ===== 

  clearStrings(); 

} 

 

//=====================================

====================================== 

 

// ===== FUNCTIONS ===== 

 

 

// Function: 

// Open Serial Ports Serial3 and Serial1 to Baud 

115200 

void openBaud() 

{   

  // Open Serial Ports 

  IMUport.begin(115200); 

  XBEEport.begin(57600);   

   

//  // Open pins for Servos 

//  topServo.attach(44); 

//  botServo.attach(46); 

} 

 

 

// Function: 

// Set Asynchronous Data Output to Nothing 

void setAsync() 

{   

  XBEEport.println("Setting Async Data..."); 

  strcpy(IMUcmd,"$VNWRG,06,0*6C"); 

  IMUport.println(IMUcmd); 

   

  // Let Buffer Build 

  delay(20);   

     

  // Read buffer while there is data on it 

  while (IMUport.available() > 0)  

  {        

    IMUres_char = IMUport.read(); 

    IMUres.concat(IMUres_char); 

  

    if (IMUres_char == 'NUL') 

      { 

        break;  

      }      

  } 

   

  // Remove leading or trailing white space 
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  IMUres.trim(); 

     

  // Check to see if response is correct 

  if (IMUres == IMUcmd) 

  { 

    XBEEport.println("Async Data Turned Off\n"); 

    IMUres = ""; 

  } 

  else 

  { 

    XBEEport.println("Async Data Not Turned Off, 

Reset Arduino\n\n"); 

    while (1) {};     

  } 

} 

 

 

// Function: 

// Set Reference Frame 

void setRef() 

{   

  XBEEport.println("Setting Reference Frame..."); 

  

strcpy(IMUcmd,"$VNWRG,26,0,1,0,0,0,1,1,0,0*6F"

); 

  IMUport.println(IMUcmd); 

   

  // Let Buffer Build 

  delay(20);   

     

  // Read buffer while there is data on it 

  while (IMUport.available() > 0)  

  {        

    IMUres_char = IMUport.read(); 

    IMUres.concat(IMUres_char); 

  

    if (IMUres_char == 'NUL') 

      { 

        break;  

      }      

  } 

   

  // Remove leading or trailing white space 

  IMUres.trim(); 

   

  // Check to see if response is correct and reset String 

  if (IMUres == IMUcmd) 

  { 

    XBEEport.println("Reference Frame Properply 

Set\n"); 

    IMUres = ""; 

  } 

  else 

  { 

    XBEEport.println("Reference Frame Not Properly 

Set, Reset Arduino\n\n"); 

    while (1) {};     

  } 

} 

 

 

// Function: 

// Save Settings 

void save() 

{ 

  XBEEport.println("Saving Settings..."); 

  strcpy(IMUcmd,"$VNWNV*57"); 

  IMUport.println(IMUcmd); 

   

  // Let Buffer Build (500 necessary due to 

mechanical specs) 

  delay(500);  

     

  // Read buffer while there is data on it 

  while (IMUport.available() > 0)  

  {        

    IMUres_char = IMUport.read(); 

    IMUres.concat(IMUres_char); 

  

    if (IMUres_char == 'NUL') 

      { 

        break;  

      }      

  } 

   

  // Remove leading or trailing white space 

  IMUres.trim(); 

 

  // Check to see if response is correct 

  if (IMUres == IMUcmd) 

  { 

    XBEEport.println("Settings Saved\n"); 

    IMUres = ""; 

  } 

  else 

  { 

    XBEEport.println("Setting Not Saved, Reset 

Arduino\n\n"); 
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    while (1) {};     

  } 

} 

 

 

// Function: 

// Reset IMU 

void reset() 

{ 

  XBEEport.println("Resetting IMU..."); 

  strcpy(IMUcmd,"$VNRST*4D"); 

  IMUport.println(IMUcmd); 

   

  // Let Buffer Build 

  delay(20);     

   

  // Read buffer while there is data on it 

  while (IMUport.available() > 0)  

  {        

    IMUres_char = IMUport.read(); 

    IMUres.concat(IMUres_char); 

  

    if (IMUres_char == 'NUL') 

      { 

        break;  

      }      

  } 

   

  // Remove leading or trailing white space 

  IMUres.trim(); 

 

  // Check to see if response is correct 

  if (IMUres == IMUcmd) 

  { 

    XBEEport.println("IMU Reset and Ready to 

Roll!\n"); 

    IMUres = ""; 

  } 

  else 

  { 

    XBEEport.println("IMU Not Reset, Reset 

Arduino\n\n"); 

    while (1) {};     

  } 

} 

 

 

// Function: 

// Start Data Collection Process 

void startYPR() 

{ 

  // Starting to request yaw, pitch, and roll data 

  XBEEport.println("Requesting Yaw, Pitch, and 

Roll..."); 

     

  //Request yaw, pitch, and roll data and wait for 

buffer to build 

  strcpy(IMUcmd,"$VNRRG,8*4B"); 

  IMUport.println(IMUcmd); 

   

  // Let buffer build 

  delay(100); 

} 

 

 

// Function: 

// Start Quaternoin collection process 

void startQuaternion() 

{  

  // Starting to request yaw, pitch, and roll data 

  XBEEport.println("Requesting Quaternions..."); 

     

  //Request yaw, pitch, and roll data and wait for 

buffer to build 

  strcpy(IMUcmd,"$VNRRG,9*4A"); 

  IMUport.println(IMUcmd); 

   

//  // Center the buoy joint 

//  topServo.write(TC);   

//  botServo.write(BC);  

//     

//  delay(10); 

} 

 

 

// Function: 

// Request YPR Data (yaw, pitch, roll) 

void getYPR() 

{ 

   

  // Wait for transmission of outgoing data to be 

complete 

  IMUport.flush();   

   

  //Request yaw, pitch, and roll data and wait for 

buffer to build 

  strcpy(IMUcmd,"$VNRRG,8*4B"); 

  IMUport.println(IMUcmd); 
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  // Let Buffer Build 

  delay(10);  

   

  // Read buffer while there is data on it 

  while (IMUport.available() > 0)  

  {        

    IMUres_char = IMUport.read(); 

    IMUres.concat(IMUres_char); 

  

    if (IMUres_char == 'NUL') 

      { 

        break;  

      }      

  } 

   

  // Remove leading or trailing white space 

  IMUres.trim(); 

   

  // Parse Data 

  yaw = IMUres.substring(10,18); 

  pitch = IMUres.substring(19,27);  

  roll = IMUres.substring(28,36); 

     

  // Display data on computer 

  XBEEport.print("Yaw: "); 

  XBEEport.print(yaw); 

  XBEEport.print("  Pitch: "); 

  XBEEport.print(pitch); 

  XBEEport.print("  Roll: "); 

  XBEEport.println(roll); 

} 

 

 

// Function: 

// Get Quaternion values and convert to pitch, roll, 

and yaw 

int getQuaternion() 

{ 

  // Wait for transmission of outgoing data to be 

complete 

  IMUport.flush();   

   

  // Start clock 

  time = millis(); 

   

  //Request yaw, pitch, and roll data and wait for 

buffer to build 

  strcpy(IMUcmd,"$VNRRG,9*4A"); 

  IMUport.println(IMUcmd); 

   

  // Let Buffer Build 

  delay(10); 

   

  // Read buffer while there is data on it 

  while (IMUport.available() > 0)  

  {        

    IMUres_char = IMUport.read(); 

    IMUres.concat(IMUres_char); 

  

    if (IMUres_char == 'NUL') 

      { 

        break;  

      }      

  } 

   

  // Remove leading or trailing white space 

  IMUres.trim(); 

     

//  // Print String to screen       

//  XBEEport.print("Received: ");     

//  XBEEport.println(IMUres); 

   

  // Parse String into the 4 Quaternions 

  Q0 = IMUres.substring(10,19); 

  Q1 = IMUres.substring(20,29); 

  Q2 = IMUres.substring(30,39); 

  Q3 = IMUres.substring(40,49); 

   

  // Character to Integer 

  q[0] = convertStringtoFloat(Q0); 

  q[1] = convertStringtoFloat(Q1); 

  q[2] = convertStringtoFloat(Q2); 

  q[3] = convertStringtoFloat(Q3); 

   

  // Pitch, roll, yaw (degrees) 

  qpitch = -r2d*atan(2*(q[1]*q[2] + 

q[0]*q[3])/(q[3]*q[3] + q[2]*q[2] - q[1]*q[1] - 

q[0]*q[0])); 

  qroll = r2d*asin(-2*(q[0]*q[2] - q[1]*q[3])); 

  qyaw = r2d*atan2(2*(q[0]*q[1] + 

q[3]*q[2]),(q[3]*q[3] - q[2]*q[2] - q[1]*q[1] + 

q[0]*q[0]));  

    

  // Display data on computer 

//  XBEEport.print("Pitch: "); 

  XBEEport.print(qpitch); 

  XBEEport.print("   "); 
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//  XBEEport.print(" Roll: "); 

  XBEEport.print(-qroll); 

  XBEEport.print("   "); 

//  XBEEport.print(" Yaw: "); 

//  XBEEport.println(qyaw); 

  time = millis()-time; 

  tot = tot + time; 

   

  XBEEport.print(" "); 

  XBEEport.println(tot); 

} 

 

 

// Function: 

// Convert Strings to Floating points 

float convertStringtoFloat(String convert) 

{ 

  char test_as_char[convert.length()+1]; 

  convert.toCharArray(test_as_char, 

convert.length()+1); 

  float myFloat = atof(test_as_char); 

  return myFloat; 

} 

 

 

// Function: 

// Take Quaternion angles and send to Servos 

void angles2servo() 

{ 

  // Send commands to servo 

  int tpos = TC-qpitch; 

  int bpos = BC+qroll; 

   

  // Make sure angles aren't greater than Max 

  if (tpos >= (TC+most)) 

  { 

    tpos = TC+most;  

  } 

   

  if (bpos >= (BC+most)) 

  { 

    bpos = BC+most;  

  } 

   

  // Make sure angles aren't less than Min 

  if (tpos <= (TC-most)) 

  { 

    tpos = TC-most;  

  } 

   

  if (bpos <= (BC-most)) 

  { 

    bpos = BC-most;  

  }  

   

  time = millis()-time; 

   

  XBEEport.print(tpos); 

  XBEEport.print(" "); 

  XBEEport.print(bpos); 

  XBEEport.print(" "); 

  XBEEport.println(time); 

   

  // Send commands to the Servo Motors 

  topServo.write(tpos); 

  botServo.write(bpos); 

} 

 

 

// Function: 

// Clear all Strings 

void clearStrings() 

{ 

  IMUres = ""; 

  yaw = ""; 

  pitch = ""; 

  roll = ""; 

  Q0 = ""; 

  Q1 = ""; 

  Q2 = ""; 

  Q3 = "";     

}  



33 

 

 

Appendix B: MATLAB Code to Perform Computer Vision Analysis of Video 
% Eric Fugleberg 
% Trident Project 
% Take video and do frame by frame analysis 
% Modified code from MATLAB Wiki 
% ---------------------------------------------- 
% MODIFY LINES 18, 19, 71, 116, & 143 FOR DIFFERENT VIDEOS 
% ---------------------------------------------- 

  

clc; 
clear; 
close all; 
fontSize = 14; 

  

% Set directory at proper level 
cd('F:\Trident\Video\Top Servo'); 

  

%Buoy Movie file to use 
buoyFile = 'step+15.avi'; 
videoTake = 'step+15'; 

  

% Open the Buoy video file 
folder = fullfile('F:\Trident\Video\Top Servo'); 
movieFullFileName = fullfile(folder, buoyFile);  

  

% Input video file into MATLAB 
buoy = VideoReader(buoyFile); 

  

% Determine how many frames and time of video 
nFrames = buoy.NumberOfFrames; 
time = buoy.Duration; 
nFramesWritten = 0; 

   

%% Make a .jpg for each frame of video 
% Extract out the various parts of the filename 
[folder, baseFileName, extentions] = fileparts(movieFullFileName); 
% Make up a special new output subfolder for all the separate 
% movie frames that we're going to extract and save to disk. 
folder = pwd;   % Make it a subfolder of the folder where this m-file lives. 
outputFolder = sprintf('%s/Frames from %s', folder, baseFileName); 
% Create the folder if it doesn't exist already. 
if ~exist(outputFolder, 'dir') 
    mkdir(outputFolder); 
end 

  

% Loop through the movie, writing all frames out 
% Each frame will be in a separate file with unique name 
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for frame = 1 : nFrames 
    % Extract the frame from the movie structure. 
    thisFrame = read(buoy, frame); 

     

    % Convert from RGB to YCbCr 
    thisFrame = rgb2ycbcr(thisFrame); 

    

    % Write the image array to the output file, if requested 
    % Construct an output image file name 
    outputBaseFileName = sprintf('Frame %4.4d.jpg', frame); 
    outputFullFileName = fullfile(outputFolder, outputBaseFileName); 
    imwrite(thisFrame, outputFullFileName, 'jpg'); 

     

    % Update user with the progress.  Display in the command window. 
    fprintf('Wrote frame %4d of %d.\n', frame, nFrames);     
end 

  

disp('~Video Transfered~'); 
close all; 

  

%% Read each file and analyze 
% Change directory to video pictures 
cd('F:\Trident\Video\Top Servo\Frames from step+15'); 

  

% Do the analysis of the photos 
p = which('Frame 0001.jpg'); 
filelist = dir([cd filesep 'Frame *.jpg']); 
fileNames = {filelist.name}; 

  

for i = 1:nFrames 
    im = imread(fileNames{i}); 

     

    % Orange Color Strip 
    imbw=im(:,:,1)<137 & im(:,:,1)>88 & im(:,:,2)<102 & im(:,:,2)>78 & im(:,:,3)<180 & im(:,:,3)>145; 

     

    % Green Color Strip 
    % imbw=im(:,:,1)<80 & im(:,:,1)>45 & im(:,:,2)<135 & im(:,:,2)>115 & im(:,:,3)<135 & im(:,:,3)>110; 

     

    % Filter out smaller shapes 
    imbw2=bwareaopen(imbw,2400); 
%     imshow(imbw2); 
%     shg; 

         

    % Get orienation of large objects 
    stats = regionprops(imbw2,'Orientation'); 
    if (stats.Orientation < 0) 
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        ort(i) = stats.Orientation + 180; 
    else 
        ort(i) = stats.Orientation; 
    end 

     

    % Update user with the progress.  Display in the command window. 
    fprintf('Analyzed frame %d of %d.\n', i, nFrames); 
end 

  

% Exit out of directory 
cd('..'); 
  

 

% Close all figures and update user analysis complete 
close all; 
disp('~Frame Analysis Complete~'); 

  

% Update user of what's going on 
disp('~Plotting Buoy Position~'); 
%% Use ort matrix and plot position of buoy 
% First frame to use for modeling 
frameone = 43; 

  

% Make orientation matrix vertical 
pos = ort(frameone:nFrames)'; 

  

% Calculate frames per second 
fps = (nFrames)/time; 

  

% Assign a time stamp for each frame 
t = [(1/fps):(1/fps):time]'; 

  

% Plot the buoy position 
figure(1); 
hold on; 
plot(t,ort','Color','red','LineWidth',0.5); 

  

% Formatting to make plot look better 
axis([0 time min(ort) max(ort)]); 
refline(0,90); 
xlabel('Time (sec)'); 
ylabel('Buoy Position'); 
set(gca,'YTick',[0:2:180]); 
set(gca,'XTick',[0:3:time]); 
set(gca,'YGrid','on'); 
set(gca,'XGrid','on'); 
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Appendix C: MATLAB Code to Estimate State Space Model 
% State Space Model Estimation from Data 

  

% VDeclare Variables 
step = 15; 

  

% Declare necessary variables 
yId = pos; 
uId = step*ones((nFrames-frameone+1),1); 
dt = (1/fps); 
t = [(1/fps*frameone):(1/fps):time]'; 

  

% iddata Object 
dataId = iddata(yId,uId,dt); 

  

% Order of system 
nx = 5; 

  

%  State Space model (Continuous time domain 

model) 
[SSmodel,x0] = ssest(dataId,nx) 

  

% Plot the Model over the actual data 
A = SSmodel.a; 
B = SSmodel.b; 

C = SSmodel.c; 
D = SSmodel.d; 

  

sys = ss(A,B,C,D); 
[y,t,x] = lsim(sys,uId,t,x0); 

  

% Plot Simulation 
plot(t,y,'--','LineWidth',1.5); 

  

%% System Modal Transformation 
% Create Modal form of Matrix 
[modal, L] = canon(sys,'modal'); 

  

% Extract Modal Amod, Bmod, and Cmod 
Amod = modal.a; 
Bmod = modal.b; 
Cmod = modal.c; 

  

% Controlability Matrix 
cont = ctrb(sys); 

  

% Observability Matrix 
obs = obsv(sys) 
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Appendix D: Excel Spreadsheet for Eigenvalues 
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Appendix E: MATLAB Buoy Animation Code 

Buoy Animation Script 
% Simple Buoy Animation 
% Inputs:  t, pitch, alpha 

  

clear; 

  

% Generate simulation data 
step = 15; 
SysIdDemo_Fugleberg 
close all; 

  

% Import simulation data 
alpha = uId; 
pitch = yId; 

  

% Block specification 
Lx = 0.05; 
Ly = 0.05; 
Lz = 0.30; 

  

%% Motion data  
%Body-b 
rb = [0.0*ones(size(t')), -0.025*ones(size(t')),  

0.0*ones(size(t'))];    % Position data 
Ab = [pitch/(57.29577), 0.0*ones(size(t')), 

0.0*ones(size(t'))]; % Orientation data (x-y-z Euler 

angle) 

 

%Body-a 
ra = [0.0*ones(size(t')),  0.025*ones(size(t')), -

0.0*ones(size(t'))];    % Position data 
Aa = [pitch/(57.29577)+pi-alpha/(57.29577), 

0.0*ones(size(t')), 0.0*ones(size(t'))]; % Orientation 

data (x-y-z Euler angle) 

  

n_time = length(t); 

  

%% Compute propagation of vertices and patches 
for i_time=1:n_time     
    Ra = Euler2R(Aa(i_time,:)); 
    Rb = Euler2R(Ab(i_time,:)); 
    VertexDataa(:,:,i_time) = 

GeoVerMakeBlock(ra(i_time,:),Ra,[Lx,Ly,Lz]); 
    VertexDatab(:,:,i_time) = 

GeoVerMakeBlock(rb(i_time,:),Rb,[Lx,Ly,Lz]); 

    [Xa,Ya,Za] = 

GeoPatMakeBlock(VertexDataa(:,:,i_time)); 
    [Xb,Yb,Zb] = 

GeoPatMakeBlock(VertexDatab(:,:,i_time)); 
    PatchData_Xa(:,:,i_time) = Xa; 
    PatchData_Ya(:,:,i_time) = Ya; 
    PatchData_Za(:,:,i_time) = Za; 
    PatchData_Xb(:,:,i_time) = Xb; 
    PatchData_Yb(:,:,i_time) = Yb; 
    PatchData_Zb(:,:,i_time) = Zb; 
end 

  

%% Begin Recording Animation 
% Set movie properties 
writerObj = VideoWriter('BuoyAnim_ALL','MPEG-

4'); 
writerObj.FrameRate = 30; 
writerObj.Quality = 100; 

  

% Start Movie 
open(writerObj); 

  

%% Draw initial figure 
figure; 
ha = 

patch(PatchData_Xa(:,:,1),PatchData_Ya(:,:,1),Patch

Data_Za(:,:,1),'r'); 
hb = 

patch(PatchData_Xb(:,:,1),PatchData_Yb(:,:,1),Patch

Data_Zb(:,:,1),'b'); 
set(ha,'FaceLighting','phong','EdgeLighting','phong'); 
set(ha,'EraseMode','normal'); 
set(hb,'FaceLighting','phong','EdgeLighting','phong'); 
set(hb,'EraseMode','normal'); 

  

% Axes settings 
set(gca,'FontSize',10); 

  

% Make it look fancy 
axis vis3d equal; 
AZ = 110; EL = 14; 
view([AZ,EL]); 
camlight; 
grid on; 
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% Zoom out a little 
xlim([-0.3,0.3]); 
ylim([-0.3,0.3]); 
zlim([-0.3,0.3]); 

  

% Remove Axis labels 
set(gca,'XTickLabel',[]); 
set(gca,'YTickLabel',[]); 
set(gca,'ZTickLabel',[]); 

  

%% Animation Loop 
for i_time=1:n_time     
    set(ha,'XData',PatchData_Xa(:,:,i_time)); 

    set(ha,'YData',PatchData_Ya(:,:,i_time)); 
    set(ha,'ZData',PatchData_Za(:,:,i_time)); 
    set(hb,'XData',PatchData_Xb(:,:,i_time)); 
    set(hb,'YData',PatchData_Yb(:,:,i_time)); 
    set(hb,'ZData',PatchData_Zb(:,:,i_time)); 

     

    frame = getframe; 
    writeVideo(writerObj,frame); 
end 

  

% End Movie 
close(writerObj); 
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SysIdDemo Script 
% System ID Demo 

% G. Piper Oct 2013 

  

step = -20; 

  

% Orginal System 

A = [-482.8777958   0   0   0   0; ... 

    0   -6.414535334    67.85914131 0   0; ... 

    0   -67.85914131    -6.414535334    0   0; ... 

    0   0   0   -0.154147244    1.162646254; ... 

    0   0   0   -1.162646254    -0.154147244]; 

  

B = [-1.796636178; ... 

    -0.419917733; ... 

    0.205319849; ... 

    -0.107425178; ... 

    0.16212014]; 

  

C = [2.587525028 0.271517048 -0.061837923                      

 3.383308511 2.139850801]; 

  

D = 0; 

  

Gss = ss(A,B,C,D);      % State space 

  

% Time vector 

dt = 1/30;      % Sample time 

t = 0:dt:60; 

  

% Input vector 

u = step*ones(size(t));   % Unit step 

u(find(t<3)) = 0.0; % Offset step function 

  

Ns = length(t);      % Number of samples 

Nu = 1;              % Number of input channels 

TYPE = 'RGS';           % Random Gaussian Signal 

% TYPE = 'RBS'           % Random Binary Sequence 

% TYPE = 'PRBS'          % Pseudo Random Binary Signal 

% TYPE = 'SINE'          % Sum-of-sinusoid Signal 

% uId = idinput([Ns Nu],TYPE);    

% uVal = idinput([Ns Nu],TYPE); 

uId = u';    

uVal = u'; 

  

% System response 

yId = lsim(Gss,uId,t); 

yVal = lsim(Gss,uVal,t); 

  

% Store data 

dataId=iddata(yId,uId,dt);        % Identification data 

dataVal=iddata(yVal,uVal,dt);     % Validation data 

  

figure(1) 

hold on; 

plot(t,uId,t,yId) 

legend('Input', 'Output') 

xlabel('Time') 

ylabel('Position (degrees)') 
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Euler2R Function 
function R = Euler2R(A) 

  

% Euler angle -> Orientation matrix 
a1 = -A(1); 
a2 = -A(2); 
a3 = -A(3); 

  

R1 = [1, 0, 0; 
 0, cos(a1), -sin(a1); 
 0, sin(a1), cos(a1)]; 

  

R2 = [cos(a2), 0, sin(a2); 
   0, 1, 0; 
     -sin(a2), 0, cos(a2)]; 

  

R3 = [cos(a3), -sin(a3), 0; 
 sin(a3), cos(a3), 0; 
 0, 0, 1]; 

  

R = R1*R2*R3; 
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GeoVerMakeBlock Function 
function VertexData = GeoVerMakeBlock(Location,Orientation,SideLength) 

  

r = Location; 
R = Orientation; 

  

Lx = SideLength(1); 
Ly = SideLength(2); 
Lz = SideLength(3); 

  

VertexData_0 = [Lx*ones(8,1), Ly*ones(8,1), Lz*ones(8,1)]... 
    .*[0,0,0; 
     1,0,0; 
 0,1,0; 
     0,0,1; 
     1,1,0; 
     0,1,1; 
     1,0,1; 
     1,1,1]; 

  

n_ver = 8; 

  

for i_ver=1:n_ver     
    VertexData(i_ver,:) = r + VertexData_0(i_ver,:)*R'; 
end 
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GeoPatMakeBlock Function 
function [PatchData_X,PatchData_Y,PatchData_Z] = GeoPatMakeBlock(VertexData) 

  

Index_Patch = ... 
    [1,2,5,3; 
    1,3,6,4; 
    1,4,7,2; 
    4,7,8,6; 
    2,5,8,7; 
    3,6,8,5]; 

  

n_pat = 6; 

  

for i_pat=1:n_pat 

     

    PatchData_X(:,i_pat) = VertexData(Index_Patch(i_pat,:),1); 
    PatchData_Y(:,i_pat) = VertexData(Index_Patch(i_pat,:),2); 
    PatchData_Z(:,i_pat) = VertexData(Index_Patch(i_pat,:),3); 
end 
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Appendix F: MATLAB Linearization Code 
% Equations of Motion for Articulated 2-Body Buoy 
% (XZ Planar motion only) 
% G. Piper - Oct 2013 
  
clear 
  
%Define State Variables 
syms roll pitch yaw      % Orientation of Body_b 
syms alpha beta          % Relative orientation between Body_a & Body_b (Joint angles) 
syms w1_b w2_b w3_b      % Angular velocity of Body_b 
syms w1_ab w2_ab         % Relative angular velocity between Body_a & Body_b 
  
syms x y z               % Inertial position of joint 
syms Vx Vy Vz            % Inertial velocity of joint 
  
%Define Inputs 
syms alpha_cmd beta_cmd  % Commanded joint angles 
  
% Define Parameters 
syms rcm_a rcm_b         % Body CM locations wrt to Body Frames 
syms rj_a rj_b           % Joint location wrt to Body Frames 
syms m_a m_b             % Body_a & Body_b mass 
syms J11_a J22_a J33_a J11_b J22_b J33_b  % Moment of Inertias about Body CMs 
syms radius_a radius_b length_a length_b  % Radius & length of cylindercal bodies 
syms CDf12 CDf3          % Coefficients of drag 
syms CDm12 CDm3          % Coefficients of drag moment 
syms CD                  % Coefficient of drag for a flat plate (yaw radial fins) 
syms nfins               % Number of yaw damping radial fins 
syms lfins wfins         % Length and width of fins 
syms zeta_j wn_j         % Joint actuator damping and natural frequency 
  
syms z0                  % Nominal depth 
  
% Constants 
syms PI G rho 
I = eye(3,3); 
  
%------------------------- 
% Velocity vector 
% Velocity = [Vx; Vy; Vz;];  % Inertial velocity of joint 
% (XZ Planar motion) 
Velocity = [Vx; 0; Vz;];  % Inertial velocity of joint 
  

  
% Angular velocity vectors 
%------------------------- 
% Angular velocity vectors 
% Omega_b =  [w1_b;  w2_b;  w3_b];   % Body-b wrt Inertial Frame 
% Omega_ab = [w1_ab; w2_ab; 0];      % Body-b wrt a Body-b 
% (XZ Planar motion) 
Omega_b =  [0;  w2_b;  0];      % Body-b wrt Inertial Frame 
Omega_ab = [0;  w2_ab; 0];      % Body-b wrt a Body-b 
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% Vector cross product matrices 
OmegaHat_b = [ 0            -Omega_b(3)    Omega_b(2); 
               Omega_b(3)    0            -Omega_b(1); 
              -Omega_b(2)    Omega_b(1)    0]; 
           
OmegaHat_ab = [ 0             -Omega_ab(3)    Omega_ab(2); 
                Omega_ab(3)    0             -Omega_ab(1); 
               -Omega_ab(2)    Omega_ab(1)    0]; 
            
%------------------------- 
% Coordinate Transformations            
B = [ cos(alpha)   0   -sin(alpha); 
      0            1    0; 
      sin(alpha)   0    cos(alpha)];   
Bt = transpose(B); 
Bdot = B*OmegaHat_ab; 
     
B_b = [ cos(pitch)   0   -sin(pitch); 
        0              1    0; 
        sin(pitch)   0    cos(pitch)]; 
B_bt = transpose(B_b);     
Bdot_b = B_b*OmegaHat_b; 
  
B_a = B_b*Bt; 
B_at = transpose(B_a); 
  
Omega_a = B*(Omega_b-Omega_ab); 
  
%------------------------- 
% Joint location wrt to Body Frames 
Rj_a = [0; 0; rj_a]; 
Rj_b = [0; 0; rj_b]; 
  
% Body CM locations wrt to Body Frames 
Rcm_a = [0; 0; rcm_a]; 
Rcm_b = [0; 0; rcm_b]; 
  
% Body CM locations wrt to Joint Frame 
D_a = Rcm_a - Rj_a; 
D_b = Rcm_b - Rj_b; 
  
% Total mass of buoy system 
m_ab = m_a+m_b; 
  
% System CM location wrt to Body Frames 
Rcmsys_a = (m_a*Rcm_a + m_b*(Rj_a + B *D_b))/m_ab; 
Rcmsys_b = (m_b*Rcm_b + m_a*(Rj_b + Bt*D_a))/m_ab; 
  
% System CM location wrt to Body CMs 
R_a = Rcm_a - Rcmsys_a; 
R_b = Rcm_b - Rcmsys_b; 
  



46 

 

 

Rdot_a = -(m_b*Bdot*D_b)/m_ab; 
Rdot_b = -(m_a*transpose(Bdot)*D_a)/m_ab; 
  
%------------------------- 
% Moment of Inertias about Body CMs 
J_a = [ J11_a  0      0; 
        0      J22_a  0; 
        0      0      J33_a ]; 
    
J_b = [ J11_b  0      0; 
        0      J22_b  0; 
        0      0      J33_b ]; 
  
% Moment of Inertia about System CM 
Jcmsys_a = J_a + m_a*(transpose(R_a)*R_a*I - R_a*transpose(R_a)); 
Jcmsys_b = J_b + m_b*(transpose(R_b)*R_b*I - R_b*transpose(R_b)); 
  
JcmsysDot_a = m_a*(2*transpose(R_a)*Rdot_a*I - Rdot_a*transpose(R_a) - R_a*transpose(Rdot_a)); 
JcmsysDot_b = m_b*(2*transpose(R_b)*Rdot_b*I - Rdot_b*transpose(R_b) - R_b*transpose(Rdot_b)); 
  
J = Jcmsys_b + Bt*Jcmsys_a*B; 
Jinv = inv(J); 
  
%============================ 
% External Forces and Moments 
%============================ 
  
% Buoyant Forces and Moments 
  
% Assume body-a is always completely submerged 
vol_a = PI*radius_a*radius_a*length_a; % Volume boby a 
volSub_a = vol_a; 
fvolSub_a = 1; 
Rcb_a = [ 0; 0; length_a/2]; % Center of buoyancy in a-frame 
  
% Assume body-b is always partially submerged 
vol_b = PI*radius_b*radius_b*length_b; % Volume boby b 
d = -(z - rj_b)/cos(pitch);  % Water line wrt b-frame 
volSub_b = PI*radius_b*radius_b*d; % Volume boby a submerged 
fvolSub_b = volSub_b/vol_b; 
Rcb_b = [radius_b*radius_b*d*tan(pitch)/4; 
         0 
         d/2+radius_b*radius_b*d*tan(pitch)/4]; 
  

  
Fbuoyant_a = B_a*[0; 0; rho*G*volSub_a]; 
Fbuoyant_b = B_b*[0; 0; rho*G*volSub_b]; 
Fbuoyant = Fbuoyant_a + Fbuoyant_b; 
  
Mbuoyant_a = cross((Rcb_a-Rcm_a),Fbuoyant_a); 
Mbuoyant_b = cross((Rcb_b-Rcm_b),Fbuoyant_b); 
Mbuoyant = Mbuoyant_a + Mbuoyant_b; 
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%---------------------------- 
% Gravity Forces and Moments 
  
Fgravity_a = B_at*[0; 0; -m_a*G]; 
Fgravity_b = B_bt*[0; 0; -m_b*G]; 
Fgravity = Fgravity_a + Fgravity_b; 
  
Mgravity_a = cross((Rcmsys_a-Rcm_a),Fgravity_a); 
Mgravity_b = cross((Rcmsys_b-Rcm_b),Fgravity_b); 
Mgravity = Mgravity_a + Mgravity_b; 
  
%---------------------------- 
% Drag Forces and Moments 
  
Fdrag_a = [ -fvolSub_a*CDf12*length_a*radius_a * Velocity(1); 
            -fvolSub_a*CDf12*length_a*radius_a * Velocity(2); 
                       -CDf3*radius_a*radius_a * Velocity(3) ]; 
  
Fdrag_b = [ -fvolSub_b*CDf12*length_b*radius_b * Velocity(1); 
            -fvolSub_b*CDf12*length_b*radius_b * Velocity(2); 
                       -CDf3*radius_b*radius_b * Velocity(3) ]; 
  
Fdrag = Fdrag_a + Fdrag_b; 
                    
Mdrag_a = [ -sign(Omega_a(1))*fvolSub_a*CDm12*length_a*radius_a*Omega_a(1)^2; 
            -sign(Omega_a(2))*fvolSub_a*CDm12*length_a*radius_a*Omega_a(2)^2; 
             -sign(Omega_a(3))*fvolSub_a*CDm3*length_a*radius_a*Omega_a(3)^2 ]; 
  
Mdrag_b = [ -sign(Omega_b(1))*fvolSub_b*CDm12*length_b*radius_b*Omega_b(1)^2; 
            -sign(Omega_b(2))*fvolSub_b*CDm12*length_b*radius_b*Omega_b(2)^2; 
             -sign(Omega_b(3))*fvolSub_b*CDm3*length_b*radius_b*Omega_b(3)^2 ]; 
          
Myawpass = [ 0; 
             0; 
             -sign(Omega_a(3))*(1/8)*nfins*CD*rho*wfins*Omega_a(3)^2*((radius_a+lfins)^4-radius_a^4) ]; 
          
% Mdrag_a = [ -fvolSub_a*CDm12*length_a*radius_a*Omega_a(1)^2; 
%             -fvolSub_a*CDm12*length_a*radius_a*Omega_a(2)^2; 
%              -fvolSub_a*CDm3*length_a*radius_a*Omega_a(3)^2 ]; 
%  
% Mdrag_b = [ -fvolSub_b*CDm12*length_b*radius_b*Omega_b(1)^2; 
%             -fvolSub_b*CDm12*length_b*radius_b*Omega_b(2)^2; 
%              -fvolSub_b*CDm3*length_b*radius_b*Omega_b(3)^2 ]; 
%           
% Myawpass = [ 0; 
%              0; 
%              -(1/8)*nfins*CD*rho*wfins*Omega_a(3)^2*((radius_a+lfins)^4-radius_a^4) ];  
          
MdragT = [ 0; 0; 0 ];  % Assume no significant translation so translation drag 
                       % coupling into rotation can be ignored 
                        
Mdrag = Mdrag_a + Mdrag_b + Myawpass + MdragT;                        
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Fext = Fbuoyant + Fgravity + Fdrag; 
Mext = Mbuoyant + Mgravity + Mdrag; 
  
%============================ 
% Joint Actuator Dynamics 
%============================ 
OmegaDot_ab = -2*zeta_j*wn_j*Omega_ab +wn_j*wn_j*([0; alpha_cmd; 0]-[0; alpha; 0]); 
  
%============================ 
% Rotational Dynamics 
%============================ 
  
P1 = -OmegaHat_b*Jcmsys_b*Omega_b; 
P2 = -Bt*Jcmsys_a*B*(OmegaHat_ab*Omega_b-OmegaDot_ab); 
P3 = -(OmegaHat_b-OmegaHat_ab)*Bt*Jcmsys_a*B*(Omega_b-Omega_ab); 
P4 = -JcmsysDot_b*Omega_b; 
P5 = -Bt*JcmsysDot_a*B*(Omega_b-Omega_ab); 
  
OmegaDot_b = Jinv*(P1+P2+P3+P4+P5+Bt*Mext); 
  
% Omega_a = B*(Omega_b-Omega_ab); 
OmegaDot_a = Bdot*(Omega_b-Omega_ab)+B*(OmegaDot_b-OmegaDot_ab); 
  
w1_a = Omega_a(1); 
w2_a = Omega_a(2); 
w3_a = Omega_a(3); 
  

  
%============================ 
% Translational Dynamics 
%============================ 
OmegaHat_a = [ 0      -w3_a    w2_a; 
               w3_a       0   -w1_a; 
              -w2_a    w1_a    0]; 
           
Bdot_a = B_a*OmegaHat_a; 
  
OmegaDotHat_a = [ 0              -OmegaDot_a(3)   OmegaDot_a(2); 
                  OmegaDot_a(3)   0              -OmegaDot_a(1); 
                 -OmegaDot_a(2)   OmegaDot_a(1)   0]; 
  
OmegaDotHat_b = [ 0              -OmegaDot_b(3)   OmegaDot_b(2); 
                  OmegaDot_b(3)   0              -OmegaDot_b(1); 
                 -OmegaDot_b(2)   OmegaDot_b(1)   0]; 
  
Q1 = -m_a*(Bdot_a*OmegaHat_a + B_a*OmegaDotHat_a)*D_a; 
Q2 = -m_b*(Bdot_b*OmegaHat_b + B_b*OmegaDotHat_b)*D_b; 
VelocityDot = (Q1+Q2+Fext)/m_ab; 
  
%=============================================== 
% Linearize Model 
%=============================================== 
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% State derivative vector 
f = [ OmegaDot_b(2); OmegaDot_ab(2); VelocityDot(1); VelocityDot(3); Omega_b(2); Omega_ab(2); Velocity(1); 

Velocity(3)]; 
  
% State vector                     
X = [ w2_b; w2_ab; Vx; Vz; pitch; alpha; x; z]; 
STATES = {'w2_b' 'w2_ab' 'Vx' 'Vz' 'pitch' 'alpha' 'x' 'z'}; 
  
% Input vector 
U = [alpha_cmd]; 
INPUTS = {'alpha_cmd'}; 
  
% Output vector 
y = [ w2_b; pitch ]; 
OUTPUTS = {'w2_b' 'pitch'}; 
  
% Jacobians 
Asym = jacobian(f,X); 
Bsym = jacobian(f,U); 
Csym = jacobian(y,X); 
Dsym = jacobian(y,U); 
  
%==================================== 
% Operating Conditions (nominal states) 
w2_b = 0; 
w2_ab = 0; 
Vx = 0; 
Vz = 0; 
pitch = 0; 
alpha = 0; 
x = 0; 
% z = z0; 
  
%==================================== 
% Nominal Inputs 
alpha_cmd = 0; 
  
%==================================== 
% Parameter Values (Refer to BouySimInit.) 
PI = 3.1416; 
G = 9.80665;     % Gravitational Acceleration (m/sec2) 
rho = 1000.1;    % Water Density (kg/m^3) 
rcm_a = -.4; 
rcm_b = 0.3;       
rj_a = 0; 
rj_b = 0;           
m_a = 1.5; 
m_b = 1.0;            
J11_a = 0.01; 
J22_a = 0.01; 
J33_a = 0.03; 
J11_b = 0.03; 
J22_b = 0.03; 
J33_b = 0.01; 
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radius_a = 0.04; 
radius_b = 0.04; 
length_a = 0.2; 
length_b = 0.4; 
  
CDf12 = 1; 
CDf3  = 1; 
CDm12 = 3; 
CDm3  = 0.1; 
CD = 0; 
nfins = 0; 
lfins = 0; 
wfins = 0; 
zeta_j = 1.01; 
wn_j =  20.0;  
  
%==================================== 
% Solve for equilibrium depth 
fo = subs(f); 
zo=solve(fo(4)==0); 
z = double(zo) 
%==================================== 
  
% Substitute values into A & B matrices 
Asym = subs(Asym); 
Bsym = subs(Bsym); 
Csym = subs(Csym); 
Dsym = subs(Dsym); 
  
% Convert symbols into numbers 
Asys = double(Asym); 
Bsys = double(Bsym); 
Csys = double(Csym); 
Dsys = double(Dsym); 
  

  
disp('//////////////////////') 
disp('Linearized Buoy Model') 
disp('//////////////////////') 
sys = ss(Asys, Bsys, Csys, Dsys, ... 
             'statename',STATES,... 
             'inputname',INPUTS,... 
             'outputname',OUTPUTS) 
damp(Asys) 
  
% Create Modal form of Matrix 
[modal, L] = canon(sys,'modal'); 
  
% Extract Modal Amod, Bmod, and Cmod 
Amod = modal.a; 
Bmod = modal.b; 
Cmod = modal.c; 
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Appendix G: State Variable Feedback 

MATLAB Code 
% State Plus Integral Control 
  
clear; 
  
% Declare all Matrices for system 
A = [-482.8777958   0   0   0   0; ... 
    0   -6.414535334    67.85914131 0   0; ... 
    0   -67.85914131    -6.414535334    0   0; ... 
    0   0   0   -0.154147244    1.162646254; ... 
    0   0   0   -1.162646254    -0.154147244]; 
  
B = [-1.796636178; ... 
    -0.419917733; ... 
    0.205319849; ... 
    -0.107425178; ... 
    0.16212014]; 
  
C = 1.546*[2.587525028 0.271517048 -0.061837923 3.383308511 2.139850801]; 
  
% Desireable Poles based on design parameters 
P = [-10+10i -10-10i -100+100i -100-100i -200]; 
  
% Calculate Control 'K' Value 
K = acker(A,B,P); 
  
% Run SIMULINK diagram 
sim('Fugleberg_PID'); 
  
% Plot control plots 
figure(1) 
hold on; 
plot(tout,pos); 
xlabel('Time (sec)'); 
ylabel('Buoy Position (deg)'); 

  



52 

 

 

SIMULINK Diagram 
 


